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Abstract: This work combines qualitative text analysis, participatory modeling with Fuzzy Cognitive 
Maps (FCM) with Exploratory Modelling and Analysis (EMA). FCM is suitable for modeling in data-poor 
environments when the system under study is not well described in quantitative terms. A case in point 
is safety culture, which describes the values, routines, and work processes that allow an organization 
to prevent disasters by avoiding and quickly bouncing back from mistakes. The concept is particularly 
relevant in oil and gas industry, where initially small errors have potentially devastating environmental, 
social, and economic impacts. In this setting relevant quantitative data on safety culture is virtually non-
existent: when nothing happens, nothing is reported, and when an accident happens and is reported, 
the report provides no direct information about the culture. Accordingly, our project creates a system 
model of safety culture based on published (mainly qualitative) research and expert inputs. EMA, on 
the other hand, is used to address uncertainty about the model structure, such as a lack of knowledge 
on how to quantify causal links. Rather than synthesizing knowledge into one model, EMA constructs 
an ensemble of plausible models and explore their impacts. Our work integrates the two approaches 
and demonstrates the results with data on oil and gas safety. In this paper, we discuss the general 
approach and present data on the first step: creating an FCM model of safety culture based on 
qualitative analysis. We present the use of thematic analysis and t-coefficient.  
 
Keywords: Exploratory Modelling Analysis; Participatory Modelling; Fuzzy Cognitive Maps; Safety 
Culture; Oil and Gas Operations.    
 
 
1 INTRODUCTION 

 
Accidents in offshore oil and gas operations can have devastating consequences, including loss of lives, 
poor health outcomes, damaged ecosystems, reduced economic opportunities, disruption of local 
communities, and hits to government budgets. A case in point is the Deepwater Horizon accident that 
reduced BP’s bottom line and taxable income by more than 61 billion US dollars1. Such damages should 
provide a strong incentive for companies to prevent accidents. Yet, accident rates in offshore oil and 
gas remain stubbornly high (NASEM, 2016; BSEE, 2017) for multiple reasons (NASEM, 2016; NEB, 
2014): Systems are complex, increasingly virtual, and often span across multiple companies and 
landscapes, which makes on the ground observations difficult and creates uncertainty about system 
states. For technical and economic reasons, production pressure is continuous, leading to long work 
hours and fatigue. Many companies rely on temporary/contracted workforce for operations and 
disasters response who do not share the same training, experiences, and sometimes also language. 
Industry culture historically values toughness (i.e., Roughnecks) and “can do” attitude over deliberation 
and analysis. Also, relevant data is scarce: The investigation of accidents provides some insights into 
how a similar accident can be prevented in the future but does not provide an understanding of the 

                                                
1 https://www.usatoday.com/story/money/2016/07/14/bp-deepwater-horizon-costs/87087056/ 
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many instances of non-accidents (i.e., safety), where errors did not occur or were corrected in time 
(NASEM, 2016).   
Borrowing from the toolset of participatory environmental modelling, we combine Fuzzy Cognitive 
Mapping (e.g. (Gray, et al., 2015; Henly-Shepard, et al., 2015)) and Exploratory Modelling and Analysis 
(Kwakkel & Pruyt, 2013; Kwakkel, et al., 2010) to investigate how safety in oil and gas operations can 
be improved.  In this paper, we discuss the background of the work and the general research approach 
and present data on the first research step, the development of a literature-derived FCM model of safety 
culture.  
 
2 BACKGROUND 
  
2.1 Safety Culture 
 
Safety culture is defined as; “the product of individual and group values, attitudes, perceptions, 
competencies to, and the style and proficiency of, an organization’s safety management” (ACSNI, 1993, 
p. 23). It is a multi-faceted phenomenon that builds on organizational values, leadership commitment, 
and continuous improvement of safety-related practices (Singer & Vogus, 2013; Weick & Sutcliffe, 
2015). As such, it is never a stable endpoint but requires ongoing management to ensure that positive 
changes are sustained, despite a tendency of systems to migrate towards states of higher risk 
(Leveson, 2011). Within various approaches to conceptualize safety culture, a distinct stream of 
research looks at so-called high reliability organizations (HROs), which refer to complex and potentially 
hazardous organizations such as nuclear power plants, air traffic control operations (Vogus, et al., 
2010), and naval aircraft carriers (Weick & Sutcliffe, 2015). In those organizations, the operations take 
place in environments described to be socially and politically challenging (Weick, et al., 1999), 
technologically sophisticated (Vogus & Sutcliffe, 2007), interdependent and timely pressured (Vogus & 
Sutcliffe, 2007), uncertain and hazardous (Weick, 1987). Nevertheless, they perform at a constant and 
high level of safety (Weick & Sutcliffe, 2015), almost error-free. As such, they are HROs. Research on 
their practices define five principles as the hallmark of HROs (Weick & Sutcliffe, 2015); (1) 
preoccupation with failure, (2) reluctance to simplify, (3) sensitivity to operations, (4) commitment to 
resilience, and (5) deference to expertise. Table 1 below briefly defines each of these five principles 
(Sutcliffe, 2011). 
 

Table 1 Definitions of HROs’ Five Principles  

Principle  Definition  
Preoccupation 
with Failure 

A chronic precaution that motivates a proactive and preventative examination of 
potential weaknesses and treats any failure or near-miss as an indicator of 
potentially large-scale issues. 

Reluctance to 
Simplify 

The tendency to question assumptions, think critically and create a more complete 
and nuanced picture of operations.  

Sensitivity to 
Operations 

Collaboration and constant sharing of information that enables members of the 
organization to develop a system view on the operations so that they can make 
adjustments to preclude errors from accumulating, particularly human and 
organizational. 

Commitment 
to Resilience 

Developing and enhancing competencies that enable the organization to quickly 
notice, contain, and learn from errors that have already happened, and quickly 
bounce back to normal operations.  

Deference to 
Expertise 

Whenever needed, decision-making power migrates to people with specialized 
expertise.  

 
The culture in HRO encourages employees to seek information actively and to take action (i.e., think, 
say, urge, tell, negotiate, report, etc.), while responsibilities are shared, failures are inquired, and new 
ideas are welcomed and rewarded (Westrum, 1993; 2004). Furthermore, HROs’ processes provide a 
cognitive infrastructure that make adaptive learning and reliable performance possible (Weick, et al., 
1999). Widespread adoption of HRO principles in offshore oil and gas operations could thus improve 
everyday safety performance and prevent severe accidents that lead to spills and other environmental 
impacts. However, achieving such a culture in oil and gas organizations, which are complex technical 
and social systems with variation in human and technical elements, is challenging. The translation of 
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HRO principles into the organizational context of oil and gas industry requires that that managers take 
a system view. In particular, they need to leverage the inherent dynamics of the system (see “leverage 
points” discussed by Meadows (2008)) to create “virtuous” cycles of continuous improvement, while 
also taking indirect, far-reaching, and potentially undesirable effects of their actions into account. 
 
2.2 Fuzzy Cognitive Mapping  

 
Fuzzy Cognitive Map (FCM) modeling (Kosko, 1988; Jetter & Kok, 2014) is a system thinking technique 
that builds quantitative models from causal cognitive maps, which are captured from academic experts, 
as well as key actors of the organization (e.g., managers, operators, emergency responders). Causal 
cognitive maps represent the elements (“concepts”) of a system. They can be qualitative and difficult to 
quantify. Causal links between concepts are represented as arrows with positive or negative signs. For 
example, a positive arrow pointing from concept A (e.g., the organization’s attitude to show “deference 
to expertise”) to concept B (e.g., the organizational practice of “empowerment of low-level decision 
makers”) means that the attitude of “deference to expertise” causes “empowerment” to increase. 
Despite the qualitative nature of these concepts and connections, FCM modeling allows quantitative 
simulations. Quantitative simulations is possible because FCM combines neural network theory and 
fuzzy set theory. Because of their ability to simulate system behavior, FCM models can answer the 
question if a large increase in one concept leads to an equally large increase in a connected concept 
or if other system elements buffer or counteract this effect. Moreover, the insights from different people 
can be captured in individual FCM models and subsequently combined to get a “full picture.” 
For example, Figure 1 illustrates the idea of capturing individual models as FCM. It shows, purely as an 
illustrative demonstration, what a supervisor in an oil and gas operations might think about issues 
related to safety culture. In his/her personal worldview safe operations increase productivity and occur 
because no errors are made, and errors that do occur are addressed immediately, also by lower level 
employees. Expert operators, with years of knowledge and – consequently – high standing in the 
organization have an ambivalent role: on the one hand, they make few mistakes and have system 
knowledge that permits them to fix mistakes immediately.  

On the other hand, they tend to take action without reporting and without wanting to waste time on 
analyzing “near misses,” which limits the ability of other workers to see and respond to problems. (The 
width of the arrows between concepts indicates the strength of the connection). The model can be used 
to test – among others - what would happen if the number of expert operators increases or decreases 

Figure 1 Mental Model of Safe Operations 
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and how an increase of contract workers would impact safety outcome. Figure 2 shows a simulation 
run for a scenario in which temporary and contract workers increase at a higher rate than expert 
operators. The model predicts that safe operations and productivity would go down. 
 

 
Figure 2 Simulation results, showing model predictions for scenario 1: a small increase in expert 

operators, a large increase in temporary workers 

In an alternative scenario, the number of expert operators is slightly reduced because “old timers” retire, 
while temporary and contract workers increase. In this case, the model predicts a smaller deterioration 
of safe operations and a higher loss in productivity.   
 

 
Figure 3 Simulation results, showing model predictions for scenario 2: a small reduction in expert 

operators, a large increase in temporary workers 

The examples above were modeled and calculated with a free software tool, Mentalmodeler 
(mentalmodeler.org), which was developed by one of the authors, Gray. Approaches for eliciting FCM 
models from experts and laypeople and integrating their insights into a single model that pools 
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knowledge are well documented in the literature (e.g. (Jetter & Kok, 2014; Gray, et al., 2015)). Moreover, 
FCM modeling is increasingly used in participatory modeling.  
2.2 Exploratory Modelling and Analysis  
 
Exploratory modeling (Kwakkel & Pruyt, 2013; Bankes, 1993) is an approach to system modeling that 
can be applied to various modeling techniques, including FCM methodology. In traditional (so-called 
consolidative or predictive) modeling, modelers attempt to build a single model whose structure 
correctly represents “how the system works”. This model predicts outcomes for any given input. In the 
case of FCM scenario techniques, the inputs are uncertain, and range of input combinations are tested 
with the same model, leading to a range of outcomes (Alizadeh, 2018). In complex systems, however, 
not only the inputs but also the structure of the system and consequently the model may be partially 
unknown. For example, in Figure 1, a modeling team may agree that there is a positive relationship 
between the concepts of “expert operators” and “no mistakes made” and create their FCM model 
accordingly, but some experts and stakeholder may perceive the link to be very strong while others 
consider it to be weak. In exploratory modeling, the simulation would be run for various weights in the 
interval from “weak” to “very strong,” thus effectively not only simulating outcomes in one FCM model 
but in multiple FCM models. 
 
3 METHOD 
We use published research on HRO to develop a baseline FCM model that represents the state-of-the-
art of HRO theory. We then review the model and the system behavior it encodes together with oil and 
gas industry practitioners (safety engineers, operations managers, safety analysts, etc.), thus 
employing participatory modeling and analysis. This step will uncover uncertainties about the model 
structure because experts may disagree with the model derived from the literature (which builds on 
research in other industries) and may disagree among themselves because they rely on limited 
observations and individual experience but lack objective data. EMA will be used to address these 
uncertainties by developing a range of models. Managers in oil and gas industry will be able to use the 
insights gained from the models to plan so-called robust interventions: approaches that lead to safety 
culture improvements in many of the possible futures. The following section describes the first steps of 
this work: Building and testing a literature-derived baseline model.    
  
3.1 Building a baseline model 
As discussed before, our work is located in a data-poor environment because safety culture factors are 
difficult to measure and not usually tracked in industry. Instead, we rely on published research on HROs 
practices and use qualitative research methods to analyze the literature: For a different FCM study, 
Alizadeh & Jetter (2017) used content analysis to capture causal relationships from secondary sources 
of data. In this research, we use the thematic analysis (TA) (Braun & Clarke, 2006; Guest, et al., 2014) 
and thematic network analysis (Attride-Stirling, 2001). TA is considered a suitable approach for 
conducting qualitative research in applied settings, such as health or policy research or education, early 
childhood development, and safety. It is a highly structured process, typically enabled by qualitative 
research software, such as Atlas.ti or NVivo, that tends to ensure the reliability and validity of qualitative 
research by enforcing a clear and traceable procedure. It results in a so-called thematic network, a 
structure of themes and relationships among them, not unlike a cognitive map. In thematic analysis, 
texts are first coded (or “tagged”) to dissect the text into meaningful segments. For example, a passage 
of text that talks about how employees do not think that their safety matters to the organization if 
managers fail to adhere to safety regulations, may be broken up into codes relating to “employee 
perceptions about the employer” and “managers following procedure”. In a second step, themes are 
identified in the codes. Themes represent more abstract ideas that emerge from several codes and are 
distinct from other themes. For example, a theme could be “managers serving as examples”. The 
themes are further organized into groups to identify basic themes, which will become thematic networks. 
The passage initially coded in our example may thus contribute to multiple basic themes. Basic themes 
are grouped and for each group, organizing themes are identified. For example, researchers may 
choose to group several themes relating to management behavior together. Each organizing theme is 
further explored to identify propositions, assertions, assumptions and its basic claim (the main 
“takeaway” from the text). Such a theme could be “manager behavior needs to consistently prioritize 
safety”. This basic claim becomes a so-called global theme, which is illustrated as a non-hierarchical 
network that shows the connections between the global theme (the main claim), the organizing themes 
that contribute to the global theme, and the basic themes that feed into the organizing themes. In our 
study, the connections are causal but other types or connections are possible.  
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Based on TA, our study identifies five global themes and thus results in five network models. Each 
model represents one of the HROs five principles and consists of concepts (i.e. basic and organizing 
themes) that are causally connected. We converted these casual maps into a single FCM and visualized 
and analyzed it in Mental modeler: It consists of 51 concepts with total 138 casual connections. The 
model density is 0.054, the connection per concept is 2.7, the number of drivers is 10, and the 
complexity score is 0.1. To calculate edge weights (i.e. the strength of a connection arrow), a thematic 
proximity method (Armborst, 2017 ) was used, resulting in a so-called thematic coefficient (t-coefficient) 
for each map. The t-coefficient indicates how much content two descriptive units (themes) share with 
each other regarding words frequencies. This coefficient is calculated using the following equation; 
 

𝑡 =
1

2
൬
𝑛12

𝑛1
+
𝑛12

𝑛2
൰ 

 
Where, n1 is the total number of words classified with theme 1, n2 is the total number of words classified 
with theme 2, and n12 is the number of intersecting words between the casually connected two themes. 
Using ATLAS.ti retrieval tools to generate a table of words frequencies, we calculated t-coefficient for 
the all the connections in this model. We thus interpret t-coefficient as an indicator of the strength of a 
causal link.  
 
3.2 Testing the baseline model  
Strategies for testing, calibrating, and validating FCM models are underreported in the literature. Jetter 
and Kok (2014) recommend adopting tests from the systems dynamics literature, such as expected 
behavior, extreme condition, and sensitivity analysis. We follow the same strategies, yet face the 
additional challenge that we are, to our knowledge, the first to quantify edges in an FCM with the t-
coefficient. We, therefore, ran a variety of model tests: First, we tested input vectors with varying 
activation levels for single concepts at a time and observed the impact on the five principles of HRO 
because they are well described in the literature and it is relatively easy to determine what system 
behavior to expect. In one instance, the model behavior relating to a particular theme was unexpected. 
We traced back every decision that was made during the thematic analysis process, all the way to the 
original text. This was done by two researchers who, as is common in qualitative research, had to agree 
before a change was made. Since the change was warranted by the data and agreed upon, we re-
calculated the t-coefficient for the concepts in question and modified the FCM accordingly. After this 
change, the model behaved as expected.  We furthermore randomly varied up to five concepts in the 
input vector at a time (based on the notion that managers focus their intervention on a limited number 
of activities) to explore the range of possible outcomes for all five HRO principles. Again, results are 
within what is to be expected. However, both of our testing strategies show that the choice of lambda2 
is important and involves trade-offs for both, the sigmoid and the hyperbolic tangent function. If we want 
results to map into the more easily interpretable range of [0,1] or [-1,1] the slope of the functions become 
steep, resulting in more tipping point, which may be difficult for industry experts to understand. Our next 
research step, the review of the model with practitioners, will likely give us insights into how to resolve 
this conflict.  
 
 
4 RESULTS TO DATE AND CONCLUSIONS 
 
Our work to date shows that (1) it is possible to use thematic analysis and t-coefficient to analyze 
secondary data to create an FCM model with quantified edges, and (2) that this model, in principle, 
reflects expected system behavior. This opens the possibility for participatory modeling projects that 
provide decision-support on solid theoretical footings: rather than relying on participants, however well 
informed they may be, to fully capture the system, we can use published research, even in data-poor 
environments. Our next research step is to investigate differences between the literature-derived model 
and expert insights, as well as disagreement among the experts. This will give us additional insights 
into the usefulness of the t-coefficient by testing model behavior against the expectations of a broader 
group of people. It will also allow us to identify uncertainties that can be approached with EMA. Over 
time, we expect this to result in a system model of HRO, tailored to the realities of offshore oil and gas, 
that will help improve safety and prevent environmental disasters.  

                                                
2 Lambda is a parameter used to determine the appropriate shape of the squashing function. It is a constant number, by which 
modelers specify function slope or the degree of fuzzification. 
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Despite its relatively early stage, our work makes several contributions: it provides the first 
comprehensive thematic analysis and the first quantitative system model of HRO, which is relevant to 
many settings, not only oil and gas industry. Furthermore, we have innovated the use of thematic 
analysis for FCM modeling, as well as the use of the only recently published t-coefficient.  
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